Posts tagged higher-category-theory
← Return to all posts

Čech totalisation

23-09-08

After a pretty long time (over two and half years or so), Mahmoud Zeinalian and I have finished our paper “Simplicial presheaves of Green complexes and twisting cochains” (arXiv:2308.09627). In this blog post I want to give a brief overview of one of the main technical tools that we use, which we call Čech totalisation. The full story involves model categories and homotopy limits and all this sort of machinery, but the main part of this post will try to keep this to a minimum, and just talk about a surprisingly useful roundabout way of describing principal bundles. There might be a second part to this, but for those interested or wanting for more details I recommend just delving into the paper — I spent a lot of time trying to make it as readable as possible!

Continue reading →

Every principal bundle is flat, in the infinity world

22-02-05

Earlier today, Mahmoud Zeinalian explained something to me that Dennis Sullivan once explained to him, and it’s been sitting in my brain ever since then. In an attempt to empty out my thoughts, and also preserve what little understanding I currently believe to have of the story, I thought I’d write a little blog post about it. It’s going to move quite quickly, because I don’t want to spend time developing the prerequisites — the main purpose is for this to jog my brain two weeks down the line when I forget all the details!

Continue reading →

More-than-one-but-less-than-three-categories

19-07-15

What with all the wild applications of, and progress in, the theory of \infty-categories, I had really neglected studying any kind of lower higher-category theory. But, as in many other ways, CT2019 opened my eyes somewhat, and now I’m trying to catch up on the theory of 2-categories, which have some really beautiful structure and examples.

Continue reading →

Twisting cochains and arbitrary dg-categories

18-12-12

Having recently been thinking about twisting cochains (a major part of my thesis) a bit more, I think I better understand one reason why they are very useful (and why they were first introduced by Bondal and Kapranov), and that’s in ‘fixing’ a small quirk about dg-categories that I didn’t quite understand way back when I wrote this post about derived, dg-, and A_\infty-categories and their role in ‘homotopy things’.

This isn’t a long post and could probably instead be a tweet but then this blog would be a veritable ghost town.

Continue reading →

Derived, DG, triangulated, and infinity-categories

18-04-26

This post assumes that you have seen the construction of derived categories and maybe the definitions of dg- and A_\infty-categories, and wondered how they all linked together. In particular, as an undergraduate I was always confused as to what the difference was between the two steps of constructing the derived category of chain complexes was: taking equivalence classes of chain homotopic complexes; and then formally inverting all quasi-isomorphisms. Both of them seemed to be some sort of quotienting/equivalence-class-like action, so why not do them at the same time? What different roles were played by each step?

Continue reading →

Loop spaces, spectra, and operads (Part 3)

18-03-12

This post is a weird one: it’s not really aimed at any one audience, but is more of a dump of a bunch of information that I’m trying to process.

Continue reading →

Loop spaces, spectra, and operads (Part 2)

17-12-11

In the previous post of this series, I talked a bit about basic loop space stuff and how this gave birth to the idea of ‘homotopically-associative algebras’. I’m going to detour slightly from what I was going to delve into next and speak about delooping for a bit first. Then I’ll introduce spectra as sort of a generalisation of infinite deloopings. I’ll probably leave the stuff about E_\infty-algebras for another post, but will definitely at least mention about how it ties in to all this stuff.

Continue reading →

Loop spaces, spectra, and operads (Part 1)

17-12-08

I have been reading recently about spectra and their use in defining cohomology theories. Something that came up quite a lot was the idea of E_\infty-algebras, which I knew roughly corresponded to some commutative version of A_\infty-algebras, but beyond that I knew nothing. After some enlightening discussions with one of my supervisors, I feel like I’m starting to see how the ideas of spectra, E_\infty-algebras, and operads all fit together. In an attempt to solidify this understanding and pinpoint any difficulties, I’m going to try to write up what I ‘understand’ so far.

Continue reading →