Posts tagged differential-geometry
← Return to all posts

Every principal bundle is flat, in the infinity world


Earlier today, Mahmoud Zeinalian explained something to me that Dennis Sullivan once explained to him, and it’s been sitting in my brain ever since then. In an attempt to empty out my thoughts, and also preserve what little understanding I currently believe to have of the story, I thought I’d write a little blog post about it. It’s going to move quite quickly, because I don’t want to spend time developing the prerequisites — the main purpose is for this to jog my brain two weeks down the line when I forget all the details!

Continue reading →

Some videos I recorded


Edit. I’m in the process of moving over from YouTube to Vimeo (no ads, less tracking, and no Google), so you can find my videos there now instead. In particular, the connections and curvature videos can be found here.

This is a very short post just to say that I’ve started uploading some maths-related videos to my YouTube page. At the moment there’s a talk I recently gave at a graduate seminar about connections and curvature from the point of view of somebody trying to avoid differential geometry, and a series I’ve been working on called Nice Analytic Sheaves For All which aims to discuss motivations for coherence conditions of complex-analytic sheaves from various points of view. Hopefully there will be more updates to the latter soon!

Continue reading →

Confusion about connections


I am a big fan of Stephen Bruce Sontz’s book Principal bundles: The Classical Case, and cannot recommend it enough, as somebody who usually finds differential geometry (a) dull, and (b) incomprehensible. Anyway, there’s a lovely quote from this book about how confusing the terminology surrounding connections can be, so let’s try to clear some of that up today.

Continue reading →